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SUMMARY

In this paper, we present a discontinuous Galerkin formulation of the shallow-water equations. An
orthogonal basis is used for the spatial discretization and an explicit Runge–Kutta scheme is used for
time discretization. Some results of second-order anisotropic adaptive calculations are presented for dam
breaking problems. The adaptive procedure uses an error indicator that concentrates the computational
e�ort near discontinuities like hydraulic jumps. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discontinuous Galerkin method (DGM) was initially introduced by Reed and Hill in
1973 [1] as a technique to solve neutron transport problems. Recently, the DGM has become
popular and it has been used for solving a wide range of problems [2].

Te=
Ne⋃
i=1
�i (1)

called a mesh. Then, the continuous function space V (�) containing the solution u of a
given PDE is approximated using a �nite expansion into polynomials in space and �nite
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904 J.-F. REMACLE ET AL.

di�erences in time. The accuracy of a �nite element discretization depends both on geomet-
rical and functional discretizations. Adaptivity seeks an optimal combination of these two
ingredients: p-re�nement is the expression used for functional enrichment and h-re�nement
for mesh enrichment. In this paper, we will only focus on h-re�nement.
The shallow-water equations (SWEs), which describe the inviscid �ow of a thin layer of

�uid in two dimensions, have been used for many years by both the atmospheric modelling
and by the hydraulic communities as a vehicle for testing promising numerical methods for
solving atmospheric, oceanic, dam breaking and river �ow problems.
It is only recently that the DGM has been applied to SWEs. Schwanenberg and Kongeter

[3] have developed a local DGM for SWEs where they use the Harten and Lax numerical
�ux [4]. In their paper, Schwanenberg et al. use isotropic template-based mesh re�nement
that do not allow neither anisotropic meshes nor to unre�ne more than the initial mesh.
Giraldo et al. [5] use a fast quadrature free DGM for solving the spherical SWEs.
Aizinger and Dawson [6], solve geophysical �ow problems using the DGM. They introduce

the Coriolis force together with some tidal forcings.
In this, our aim is to show how h-adaptivity is able to provide highly accurate solutions

of the SWEs. For the spatial discretization of the unknowns, we choose an orthogonal basis
that diagonalizes the mass matrix and, thus, simpli�es its evaluation. The free surface allows
gravity wave (sound waves) propagation at speed cg=

√
gh where h is the �uid depth and g is

the acceleration of gravity. In our examples, water depth is su�ciently small so that cg=O||v||
where v is the �uid velocity. Typically, when the sound waves have the same propagation
speed as the material waves, an explicit time integration is well adapted for computing. We
use here a second-order explicit TVD Runge–Kutta time integration scheme [7].
Transient computation of �ows including moving features like abrupt wave fronts are appli-

cations where adaptivity in time is crucial. Without explicit interface tracking [8], h-adaptivity
will certainly be necessary to accurately represent the complex evolution of waves. We present
procedures to perform adaptive computations where the discretization space Vh changes in
time. Both conforming and non-conforming adaptation schemes are presented and compared
with known results and experiments.

2. DISCONTINUOUS GALERKIN FORMULATION OF SWEs

2.1. Continuous formulation

Consider an open set � ⊂ R2 whose boundary @� is Lipschitz continuous with a normal n
that is de�ned almost everywhere. We seek to determine u(�; t) : R2 ×R → L2(�)m=V (�)
as the solution of a system of conservation laws

@tu+ div F̃(u)= r (2)

Here div =(∇ · ; : : : ;∇ · ) is the vector-valued divergence operator and

F̃(u)= (F1(u); : : : ;Fm(u))

is the �ux vector with the ith component Fi(u) : (H1(�))
m → H(div;�). Function space

H(div;�) consists of square integrable vector-valued functions whose divergence is also square
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integrable i.e.

H(div;�)= {v | v∈ L2(�)
2
;∇ · v∈ L2(�)}

With the aim of constructing a Galerkin form of (2), multiply Equation (2) by a test
function w∈V (�), integrate over � to obtain∫

�
@tuw dv+

∫
�
div F̃(u) · w dv=

∫
�
rw dv ∀w∈V (�) (3)

We then use the divergence theorem to obtain the following variational formulation:∫
�
@tuw dv−

∫
�
F̃(u) · ∇w dv+

∫
@�
F̃(u) · nw ds=

∫
�
rw dv ∀w∈V (�) (4)

2.2. Discrete formulation

The physical domain � is discretized into a collection of Ne elements

Te=
Ne⋃
e=1
e (5)

Then, the continuous function spaces (in�nite dimensional) are replaced by �nite-dimensional
expansions. The di�erence between the DGM and classical FEMs is that the solution is
approximated in each element separately for the DGM: No a priori continuity requirements
are needed. The discrete solution may then be discontinuous at inter-element boundaries.
Figure 1 shows a typical situation of three elements e1, e2 and e3. The approximated �eld u
is smooth in each element but may be discontinuous at inter-element boundaries.
In each element, we have m �eld components ui, i=1; : : : ; m. In the case of SWEs, we

have m=3 unknown �elds: The water height h and the two components of the �uid velocity
vx and vy. Here, each �eld is approximated with the same discrete space.
We note

Pk =span{xlym; 06 l; ml+m6 k}

⏐

⏐

⏐

Figure 1. Three elements e1, e2 and e3 and the piecewise discontinuous solution u.
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the space of complete polynomials of total degree at most k. The dimension d= dimPk
is d=(k + 1)(k + 2)=2. The approximation of component ui over element e, noted uei is
written as

uei �
d∑
j=1
�j(x; y)U (e; i; j)

where the U (e; i; j) are the coe�cients of the approximation or degrees of freedom. In each
element, we have m×d coe�cients, and, because we consider that all approximations are
disconnected, there are Ne ×m×d coe�cients for the whole mesh. We also have

B= {�1; : : : ; �d}
that is a basis of Pk . Usual FEM have limited choices for B due to the continuity requirements
of the approximation. Nodal, hierarchical or non-conforming basis are among the usual basis
for classical FEMs. In case of the DGM, there are no limitations for the choice of the �i’s.
In fact, any basis B can be used and, in terms of the numerical solution, all basis for the
same polynomial degree k are strictly equivalent i.e. lead to the same numerical solution. For
example, P1 can be spanned with B= {1; x; y}; B= {1− x−y; x; y} or any other combination.
Even if the numerical solution does not depend on the choice of the basis B, it is advantageous
to use bases [9] that have the following L2-orthogonality property∫

e
�i�j dv= �ij

For quadrangles, orthogonal bases are constructed as tensor products of Legendre polynomials.
For triangles, Dubiner [10] or Remacle et al. [9] have developed orthogonal basis through
Gram–Schmidt orthogonalization. For example, one of the many L2-orthogonal expansion of
P1 can be written in the cannonical triangle as

B= {
√
2;−2 + 6x;−2

√
3(1− x − 2y)}

For each �eld component uei in element e, we have to solve the following d equations (one
equation per �j):∫

e
@tuei �j dv−

∫
e
[Fi(ue)∇�j + ri�j] dv+

∫
@e
Fi(u) · n�j ds=0 ∀�j (6)

If the �j’s are orthonormal over the reference element and if Ve is the volume of element e,
(6) simpli�es into

Ve@tU (e; i; j)=
∫
e
[Fi(ue)∇�j + ri�j] dv−

∫
@e
Fi(u) · n�j ds ∀�j (7)

Note that Equation (7) is correct only if elements have constant Jacobians (straight-sided
triangles, for example). Now, a discontinuous basis implies that u is not unique on @e and,
consequently, that the normal trace Fi · n is not de�ned on @e. In this situation, a numerical
�ux fi is usually used on each portion @ek of @e shared by element e and neighbouring
element ek . Here, ue and uek are the restrictions of solution u, respectively, to element e and
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element ek . With a numerical �ux, Equation (7) becomes

Ve@tU (e; i; j)=
∫
e
[Fi(ue)∇�j + ri�j] dv−

ne∑
k=1

∫
@ek

fi(ue; uek )�j ds ∀�j (8)

where ne is the number of faces of element e.

2.3. Shallow-water equations

The movement of an incompressible �uid with constant density under the in�uence of a
gravitational body force is considered. The behaviour is basically inviscid except for the
possible inclusion of a viscous bottom friction term. Vertical accelerations of the �uid are
neglected, which allows integrating the remaining part of the vertical momentum equation
and to obtain an expression for the pressure which in turn can then be eliminated from the
system. The error associated with this approximation is of the order of h2=l2 (h, the undisturbed
water height, l, the characteristic length scale of the waves in x direction). This estimate is
equivalent to the so-called ‘long-wave limit’ of wave motion, i.e. we are dealing with either
very long waves or with shallow water. Physically, the horizontal velocity that is retained can
be interpreted as a vertical average of the �uid velocity. The SWEs have the form (2) with
m=3,

u=

⎧⎪⎪⎨
⎪⎪⎩
h

hvx

hvy

⎫⎪⎪⎬
⎪⎪⎭ ; F̃(u)=

⎧⎪⎪⎨
⎪⎪⎩

hv

hvxv+ 1
2gh

2ex

hvyv+ 1
2gh

2ey

⎫⎪⎪⎬
⎪⎪⎭

and

r=

⎧⎪⎪⎨
⎪⎪⎩

0

−gh(@xH + Sfx)
−gh(@yH + Sfy)

⎫⎪⎪⎬
⎪⎪⎭

Here h is the water depth above the bed, H the bed elevation (see Figure 2), v the water
velocity, g the acceleration of gravity, ex and ey are the unit vectors in the x and y directions,
respectively, and vx= v · ex and vy= v · ey. The two components of the bottom friction Sfx and

Figure 2. The water bed depth H and the water height h.
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Sfy can be expressed by the Manning formula [11]

Sfx=
n2vx

√
v2x + v2y
h4=3

; Sfy=
n2vy

√
v2x + v2y
h4=3

(9)

where n is an empirical roughness coe�cient.

2.4. Numerical �ux

We concentrate on the time evolution of our �ow model from an initial state that consists of
two semi-in�nite uniform zones which are separated by a discontinuity. This set-up is usually
referred as a Riemann problem [12, 13]. One can imagine a realization of this situation by
positioning a diaphragm (‘an in�nitely thin dam’) between the two �uid states and somehow
rupturing it at time t=0. Our objective is to determine the resulting induced wave motion as a
function of the initial state. This problem is geometrically one dimensional in that the solution
only depends on one space coordinate normal to the diaphragm. The Riemann problem related
to non linear hyperbolic systems is usually hard to compute because of the non linearity of
�uxes. Usually, it is only available numerically through a Newton–Raphson iteration.
The idea of using the solution of Riemann problems for solving non linear conservation

laws numerically is from Godunov [14]. At the time, it was of course in the context of �nite
di�erences. Following the idea of Godunov, we consider that each edge @e of the mesh is a
diaphragm separating two states: The solutions u in the two elements neighbouring @e. The
numerical �ux f is then computed using the solution uR of the associated Riemann problem:

f = F̃(uR) · n

For linear problems, this technique consists in taking the ‘fully upwind �ux’ and therefore
the resulting scheme is stable. For non linear problems, it has been proven that the choice of
Godunov �uxes are ensuring that the numerical solution satis�es the entropy condition [13].
Practically, solving exactly Riemann problems at each mesh edge is complex and com-

putationally prohibitive. In most of the cases (except perhaps in the context of high-speed
compressible �ows with very strong shocks [15]), an approximate solution to the Riemann
problem is su�cient. Approximate Riemann solvers produce more numerical dissipation than
Godunov �uxes. Hence, numerical experience suggests that the choice of a given numerical
�ux (that respects a discrete entropy condition) does not have a signi�cant impact on the
accuracy of the solution, especially when polynomial degree k increases.
Among the approximate Riemann solvers designed for computing the numerical �ux f , a

very pragmatic and successful approach has been taken by Roe [16] and later extended to
the SWEs [17, 18]. The approach consists in constructing the exact solution of a linearized
Riemann problem at each mesh edge. In the framework of SWEs applied to water–wave
propagation problems, an important parameter is the Froude number Fr, de�ned as the ratio
between the water velocity v and the celerity c=

√
gh. The Froude number determines the

subcritical (Fr¡1) or supercritical (Fr¿1) character of the �ow. Following Soares Frazão
and Zech [19], the Roe numerical �ux for SWEs can be written as a function of Fr as

f(ue; uek )=
1
2 [(1 + FrA)F̃(ue) + (1− FrA)F̃(uek )] · n+ 1

2cA(1− Fr2A)[ue − uek ] (10)
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where the subscript A denotes average quantities. In (10), the average Froude number

FrA=
vA · n
cA

is computed using Roe averages i.e.

(vx)A=
(vx)e

√
he + (vx)ek

√
hek√

he +
√
hek

; (vy)A=
(vy)e

√
he + (vy)ek

√
hek√

he +
√
hek

vA= {(vx)A; (vy)A}T and cA=
√
g 12 (he + hek )

In order to use (10) for both the sub- and supercritical case, the absolute value of the Froude
number Fr is bounded by 1. We correct its value in order to ful�ll this physical constraint:
If Fr¿1, Fr=1 and if Fr¡− 1, Fr= − 1. The situation is similar in the case of the Euler
equations, as noted in the original paper by Roe [16]. The �ux is the sum of a high-order
centred term plus a dissipation term of order zero:

f= 1
2[F̃(ue) + F̃(uek )] · n︸ ︷︷ ︸
Centred di�erences

+ 1
2Fr[F̃(ue)− F̃(uek )] · n+ 1

2cA(1− Fr2)[ue − uek ]︸ ︷︷ ︸
Dissipation

It has been proven in Reference [20] that, in smooth regions, ue − uek =O(hk+1) so that the
dissipation introduced by the upwinding does not exceed the truncature error of the scheme.
Near discontinuities or in badly resolved zones where the mesh is too coarse, ue − uek =O(h)
and the scheme is �rst order, as expected.

3. ANISOTROPIC MESH ADAPTATION

3.1. De�nition of the metric �eld M

The goal of our mesh adaptation process is to determine the anisotropic mesh con�guration
that will most e�ectively provide the level of accuracy required for the parameters of interest.
The strategy adopted in the present paper is to construct an optimal anisotropic mesh through
a metric �eld M(x), x∈�. The goal of a mesh adaptation is to build a mesh where every
edge is of size 1, using the non uniform measure of distance de�ned by the metric M. If y
is the vector representing an edge with its Euclidian coordinates y1; y2; y3, the optimum mesh
is characterized by

yTMy=1 ∀y
The metric M is a symmetric covariant tensor with all its eigenvalues �1; �2; �3 positive. If
E1, E2, E3 are the orthogonal unit eigenvectors associated with the eigenvalues �1; �2; �3, the
metric tensor can be written as

M=RT�R

with

�=diag(�1; �2; �3)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923



910 J.-F. REMACLE ET AL.

Figure 3. Interpretation in 2D of the di�erent parameters in the de�nition of the metric M.

and

R=

⎡
⎢⎢⎣
E1

E2

E3

⎤
⎥⎥⎦

The interpretation of mesh optimality in terms of unit edges is then equivalent to

yTRT�Ry=1 ∀y
where Ry= {Y1; Y2; Y3}T are the coordinates of y in the principal axis of the metric M i.e.
(see Figure 3)

y=Y1E1 + Y2E2 + Y3E3

The optimality is then re-written as

Y 21 �1 + Y
2
2 �2 + Y

2
3 �3 = 1

which means that, at each point of the domain, an edge is of optimal size if its extremity
sits on an ellipsoid of equation Y 21 �1 + Y

2
2 �2 + Y

2
3 �3 = 1 (see Figure 3). The eigenvalues of

the metric are then directly related to desired mesh sizes in the principal directions of the
metric M.

3.2. Computing mesh sizes

Those three sizes s1 = 1=
√
�1, s2 = 1=

√
�2 and s3 = 1=

√
�3 are computed using an error indica-

tion procedure. In smooth regions, i.e. regions far from hydraulic jumps, the error is computed
using the tensor of second-order derivatives of the water height h:

Hij=
@2h
@xi@xj

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923
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The Hessian H is computed at each vertex using a patchwise linear reconstruction of the
gradients ∇h [21]. The Hessian is symmetric and we have then the orthogonal decomposition

H =RT ��R

with

��=diag( ��1; ��2; ��3)

In terms of Taylor expansion theorem, the discretization error e in the direction of the ith
eigenvector of H is proportional to �s2i ��i, i.e. e= c �si

2 ��i, where �si is the local mesh edge length
in the ith direction for previous computation. We can compute a mesh with equidistributed
error by choosing

s2i =
�

c �si2| ��i|
where � is a targeted error that is de�ned by the user, c is the coe�cient of proportionality
and si is desired local mesh edge length in the ith direction. It is usual to de�ne maximal
and minimal element sizes smax and smin that prevent to build up nonrealistic metric �elds.
The metric is then corrected by

�i= max
(
min

(
1
s2i
;
1
s2min

)
;
1
s2max

)
In Reference [22], we have shown how to detect e�ciently nonsmooth regions in DGM

computations. Our discontinuity detector has the following form:

Ie=

∑ne
j=1|

∫
@ej
(he − hej) ds|

s(k+1)=2e |@e|‖he‖
(11)

In all forthcoming examples, we choose se as the radius of the circumscribed circle in element
e, and use a maximum norm based on local solution maxima at integration points.
We can show that Ie → 0 as either se → 0 or p → ∞ in smooth solution regions, whereas

Ie → ∞ near a discontinuity. Thus, the discontinuity detection scheme is

if Ie ¿ 1; h is discontinuous

if Ie ¡ 1; h is smooth
(12)

Near discontinuities, Hessians are highly ill conditioned. When a discontinuity is detected, we
use the gradients ∇h in order to compute the metric �eld. Because we know that, without
di�usion, a hydraulic jump has an in�nitely small thickness, we use the minimal allowable
mesh size smin in the direction of the gradient and the maximal size smax on the other direction.
A metric smoother is crucial at this point in order to reconnect smooth and discontinuous

regions. The algorithm is described in Reference [21].

3.3. Mesh adaptation using local mesh modi�cations

In our approach, the mesh is adapted using local mesh modi�cation operators that enable fast
and accurate solution transfers. Given the mesh metric �eld M de�ned over the domain, the

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923
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goal is to apply local mesh modi�cation operators to yield a mesh of the same quality as
would be obtained by an anisotropic domain remeshing procedure. In every mesh modi�cation
operator, one cavity triangulation C, i.e. a set of mesh entities that form a connected volume,
is replaced by another cavity triangulation C′ with the same closure. Formally, we write

Tn+1 =Tn + C′ − C (13)

where Tn denotes the mesh before the local mesh modi�cation and Tn+1 is the mesh after
the local mesh modi�cation. In the kernel of each mesh modi�cation, we ensure that there is
a moment when both cavity triangulations are present. We are able then to rewrite (13) as a
two-step procedure:

T′=Tn + C′ (14)

Tn+1 =T′ − C (15)

T′ represents a mesh that is topologically incorrect but both cavity triangulations C and C′

are present so that we can insert a callback to the solver to transfer the solution u from C to
C′. One mesh modi�cation plus solution transfer operation is done in three steps:

T′=Tn + C′ (16)

	L2 (u;C;C′) (17)

Tn+1 =T′ − C (18)

where 	L2 (u;C;C′) is, in our case, the L2 projection of the solution u form the cavity C to
C′. The L2 projection of the solution from C to C′ ensures that conservative quantities like
mass or momentum’s are conserved through the solution transfer process.
In two dimensions, we only use the three mesh modi�cation operators that are described

below.

3.3.1. Edge splitting. The �rst mesh modi�cation operator is the edge splitting. It consists
in modifying a cavity C composed of two neighbouring elements e1 end e2 by splitting the
common edge and replacing e1 and e2 by e3, e4, e5 and e6 as represented in Figure 4.

Figure 4. Edge splitting in 2D.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923
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Figure 5. Edge collapsing in 2D.

Figure 6. Edge swapping in 2D. An edge separating two triangles is replaced by the opposite edge.

3.3.2. Edge collapsing. The second mesh modi�cation operator is the edge collapsing. An
edge y is too short, so it is decided to remove it. The origin of the edge is moved to its end,
modifying a cavity C composed of all the triangles neighbouring the origin of the edge (see
Figure 5).

3.3.3. Edge swapping. The last mesh modi�cation operator is the edge swapping. It consists
in modifying a cavity C composed of two neighbouring elements e1 end e2 by swapping the
edge and replacing e1 and e2 by e3 and e4 as represented in Figure 6.
The mesh adaptation algorithm for the three-dimensional case is described in Reference

[23]. Edge collapsing’s are used to coarsen the mesh in regions of low error while edge
splitting’s are used to re�ne the mesh in regions of high error. Edge swapping’s are used
to align the mesh to the metric axes and to enhance mesh quality. Note that we do not
consider here vertex repositioning in our mesh modi�cation procedure. The consequence of the
numerous local mesh modi�cations on the quality of the numerical solution is of importance.
Questions are

• Does the adaptive procedure introduce excessive numerical dissipation?
• Does the adaptive procedure introduce oscillations?
• Does the adaptive procedure introduce some loss of conservativity?
The edge splitting procedure does not change the numerical solution. Consequently, it does

not introduce any complexity.
While performing edge collapsing, some information is lost because the discrete space

where the numerical solution lives is made smaller. Some numerical dissipation may then
be introduced by the operation. The L2 projection 	L2 (u;C;C′) may also introduce Gibbs
oscillations (overshoots) for polynomial order k¿0. Because we use L2 projections, the con-
servative quantities are transferred correctly from C to C′. Note that, for the target cavity C′,
the solution over C is piecewise discontinuous and, consequently, we have to be careful and

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923
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compute the L2 projection accurately. Despite that, we do not expect that edge collapsing’s
will cause any problem since they are performed in regions of low error only and, therefore,
the resulting modi�cations of the solution due to the operation should not have any signi�cant
impact.
The edge swapping is certainly the most contradicting. Edge swappings are performed

everywhere, including regions of high error. Similarly to edge collapsing, edge swapping is
an operation that modi�es the solution and therefore introduce errors. Conservation is not an
issue because we do not consider curved geometries here. This issue will be considered in a
forthcoming paper.

4. RESULTS

4.1. Radial dam break problem

Consider the SWEs with piecewise initial data

h(r)=

{
2 if r ¡ 1

1 if r ¿ 1

r=
√
x2 + y2 being the radial coordinate. The �uid is initially at rest i.e. vx= vy=0. This is

the problem of a dam break i.e. two zones at rest (null velocity) that are separated by an
interface (the dam), the water height being di�erent in these two zones. At t=0, the interface
is impulsively removed (the dam breaks). The dam break Riemann problem for SWEs has
a solution that consists in a rarefaction wave and a hydraulic jump (shock). The rarefaction
wave moves in the direction of the highest water depth (i.e. radially, towards the origin)
while the shock moves in the direction of low water depth. Once the rarefaction wave hits
the origin r=0, it is re�ected and the �uid �ows back outwards. A second shock rapidly
forms. This problem has an interesting structure and will be used to verify our re�nement
methodology:

• Examine the in�uence of multiple mesh re�nement and coarsening steps on the preser-
vation of conservation (i.e. verify if the adaptive scheme is able to compute the right
speed for the waves).

• Show that the anisotropic re�nement produces optimal discretizations (i.e. verify that
anisotropic re�nement is cheaper than isotropic re�nement or no re�nement for a given
level of solution resolution).

For that purpose, we need the exact solution of the problem. There is no analytical solution for
the radial dam break problem. Our reference solution was computed numerically by solving
the one-dimensional equations

@h
@t
+
@
@r
(hvr) =−hvr

r
@vr
@t
+
@
@r

(
hv2r +

1
2
gh2

)
=−hv

2
r

r

(19)
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(a) (b) (c)

Figure 7. Plots of the water height at di�erent time steps. Those are the solution of the anisotropic run:
(a) t=0:5; (b) t=1; and (c) t=1:5.

with a high resolution �nite volume scheme on a very �ne grid of 2000 points [24]. In what
follows, we will call it the ‘reference’ solution.
We have done three computations of the problem. The �rst one has been done using a

uniform mesh with element sizes of 1
200th of the size of the domain i.e. 0.025. The uniform

mesh has about 20 000 nodes and 40 000 elements. The second computation was done using
isotropic re�nement i.e. using the same mesh size in each direction as a function of position
and time. The mesh was adapted every 0:01 s. Final time of the computation was t=1:25
so that 125 mesh adaptations were performed. The minimum mesh size smin =5=200 i.e.
1

200th of the size of the problem. The maximum mesh size smax =5=20 i.e. 1
20th of the size

of the problem. The third computation was done using anisotropic re�nement. Adaptation
parameters limits were the same as for the isotropic re�nement. The three problems have the
same e�ective discretization with respect to the smallest mesh size at any location in any
direction.
Figures 7 and 10 show meshes and plots of water height h at di�erent time steps for an

anisotropic simulation.
Figure 8 shows plots of the water height along radial direction. Those results show that

the positions of the waves are not deteriorated by the multiple mesh adaptations. We have
shown in Section 3.3 that the kind of projections used do not cause problems in term of
conservation. Another important result is that the solution does not seem to be deteriorated
by excessive numerical di�usion: Solutions with and without re�nement look similar (this is
of course a weak justi�cation that will be re�ned).
To re�ne the comparison between solutions with mesh re�nement and with the uniform

mesh, we have computed (Table I) the L1 relative norm of the error

�=

∫ 5
0 |h− hex| dr∫ 5
0 |hex| dr

for both uniform and adapted meshes (hex is the ‘reference’ solution computed with the �ne
1D grid). We have plotted h and hex along the radial direction (Figure 8). We see that both
uniform and adapted mesh have relative errors � that are comparable.
Of course, there is about 40 times less elements in the anisotropically (see Figure 10)

adapted grid than in the uniform grid and about four times (see Figure 9) less elements than

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:903–923



916 J.-F. REMACLE ET AL.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

h

r

reference
aniso

big mesh

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

h

r

reference
aniso

big mesh

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

h

r

reference
aniso

big mesh

(a)

(b)

(c)

Figure 8. Comparison at di�erent times between exact solution, solution on the uniform grid and solution
on the anisotropically adapted grid: (a) t=0:5; (b) t=1:0; and (c) t=1:5.

Table I. Relative error � for the radial dam break.

Adapted mesh

Uniform
t mesh Isotropic Anisotropic

0.00 1:10758E− 03 1:52250E− 03 1:56324E− 03
0.25 3:84628E− 03 3:26702E− 03 4:12431E− 03
0.50 3:65177E− 03 3:00082E− 03 3:42923E− 03
0.75 4:09531E− 03 3:40864E− 03 4:07662E− 03
1.00 4:94453E− 03 4:73405E− 03 5:09021E− 03
1.25 3:94322E− 03 3:65974E− 03 3:85844E− 03
1.50 3:26890E− 03 3:73175E− 03 3:66172E− 03

in the isotropically adapted grid. One can remark that the gain in terms of element number
grows with time. At t=0:5, the isotropic mesh has 5386 triangles while the anisotropic one
has 2078. At time t=1:5, the isotropic mesh has now 9510 triangles while the anisotropic
one only 1932. At early stages of the computation, the radius of curvature of the shock is
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(a) (b) (c)

Figure 9. Adapted meshes for the isotropic re�nement case: (a) t=0:5, 5386 triangles; (b) t=1, 7198
triangles; and (c) t=1:5, 9510 triangles.

(a) (b) (c)

Figure 10. Adapted meshes for the anisotropic re�nement case. The images on bottom show
zooms of the mesh near the hydraulic jump: (a); t=0:5, 2078 triangles; (b) t=1, 1920

triangles; and (c) t=1:5, 1932 triangles.

small so that elements with large aspect ratio are not constructed, at least with the given
mesh size parameter smin. Small sizes are required in the radial direction in order to capture
the shock and in the azimuthal direction in order to capture the curved shape of the shock.
The use of curved elements could certainly help here. When the shock evolves, it grows
radially and its curvature decreases. More anisotropic elements can then be constructed and
the e�ciency of the procedure grows. In fact, it looks that the number of elements in the
shock remains almost constant in the process so that the total number of element does not
grow in the anisotropic re�nement case. In the isotropic case, the number of elements in the
shock grows linearly with the distance of the shock to the origin. This e�ect will be more
dramatic in 3D simulations, e.g. for Euler equations of gas dynamics. There, the number of
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Figure 11. Experimental set-up for the dam break problem in presence of a building.

Figure 12. Adapted mesh (top), water level contours (middle) and discontinuity de-
tector (bottom) at t=0:66 s. At this time, the mesh is composed of 4413 triangles

which correspond to 39 717 unknowns.
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Figure 13. Adapted mesh (top), water level contours (middle) and discontinuity detector (bottom) at
t=1:97 s. At this time, the mesh is composed of 10 258 triangles which correspond to 92 322 unknowns.

elements in a shock will grow quadratically in the isotropic case while remaining constant in
the anisotropic case.

4.2. Dam breaking in presence of a building

The second example is the one of a dam break wave against a rectangular building [25]. The
experiments were performed at the Civil Engineering Department of the Universit
e catholique
de Louvain (Belgium), on the set-up sketched in Figure 11. The channel has a total length
of 35.80m and is 3.60m wide. The cross-section near the bed is trapezoidal. The building
is located 3.40m downstream from the dam. The initial conditions consist in a 0.40m water
level in the upstream reservoir and a 0.02m thin water layer in the downstream channel.
The friction coe�cient n of (9) was chosen as n=0:01.
Two types of �ow measurements were performed: Water level and velocity at 5 gauging

points, and �eld data using a Vorono�� imaging technique [26, 27]. This latter technique, ini-
tially developed for dense granular �ow measurements, was used to obtain the experimental
pictures that are compared to the computations in some of the following �gures. A com-
plete description of the test case and of the available experimental data can be found in
Reference [25].
The only computation that we have done for this problem was anisotropically adapted.

Parameters of the simulation were smin =0:01m and �=0:05. For sake of comparison, we
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Figure 14. Adapted mesh (top), water level contours (middle) and discontinuity detector (bottom) at
t=3:42 s. At this time, the mesh is composed of 15 606 triangles which correspond to 140 454 unknowns.

have generated a uniform triangular mesh with a uniform mesh size of 0.01m. This ‘equiv-
alent’ mesh was containing 2 968 944 triangles (i.e. about three million elements and about
27 million unknowns!). In our anisotropic simulation, the initial mesh was containing about
2000 triangles. After 10 s of computation, this number was about 16 000 (i.e. 2 orders of
magnitude less than the equivalent uniform mesh). Figures 12–14 show adapted meshes,
water level contours and discontinuity indicator at di�erent times. The indicator Ie of Equa-
tion (11) was only shown when its value was greater than 1. The threshold value Ie=1
was convenient to detect the principal hydraulic jumps of the �ow. Note that the indicator
did not detect the slope discontinuity of the water bed at y= ± 1:8m. On the other side,
Figure 14 show that, even if the indicator Ie did not predict any discontinuity along this
line, the second-order derivative of h being large there, the mesh is re�ned along that line
because of the large value of @2h=@y2. It is an example among many others that show that the
use of second-order derivatives may be an incorrect strategy for predicting the discretization
error.
Another useful application of the discontinuity indicator Ie is related to limiting. With

limiting only used near discontinuities, i.e. when Ie¿1, we need not be concerned with
maintaining a high order of accuracy; thus, we focus on the slope limiting procedure introduced
by Cockburn and Shu [28]. Slope limiting compares solution gradients on e with average
solution gradients on neighbouring elements ek . The computed and average gradients are
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Figure 15. Water level at t=2:63 s. for the isolated building problem. On top, the anisotropic
computation and on bottom, the experiment. Thick lines were drawn on top of the picture in

order to enhance the hydraulic jumps.

compared and elemental slopes are restricted to the range spanned by neighbouring averages
when all have the same sign. Slopes are set to zero should signs disagree [28–30].
The adaptive mesh procedure was able to capture the complex features of the �ow with

a high level of accuracy. The comparison with our experiment (Figure 15) shows that the
adaptive DGM was able to predict complex wave interactions with accuracy.

5. CONCLUSIONS

In this paper, we have shown the application of an adaptive meshing procedure on transient
computation of shallow-water equations. The adaptive procedures were able to e�ectively
predict the wave motions and locations through a large number of mesh adaption steps.
The mesh adaptations did e�ectively control the discretization errors and were executed such
that they did not introduce excessive numerical dissipation during the required projection
operations.
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The ability to perform a large number of adaptation (125 mesh adaptations for the radial
dam break and more than 500 for the isolated building case) without degradating the solution
is principally due to the underlying numerical schemes. The use of the discontinuous Galerkin
method with orthogonal basis and controlled local mesh modi�cation operations allows con-
servative and high-order mesh-to-mesh projections, avoiding there the usual drawbacks of
multiple adaptations.
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